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The stretched spiral vortex is identified using direct numerical simulation (DNS)
data for homogeneous isotropic turbulence and its properties are studied. Its genesis,
growth and annihilation are elucidated, and its role in the generation of turbulence
is shown. Aside from the two symmetric modes of configurations with regard to
the vorticity alignment along two spiral sheets and the vortex tube in the core
region studied in previous works, a third asymmetric mode is found. One of the two
symmetric modes and the asymmetric mode are created not by a conventional rolling-
up of a single vortex sheet but through the interaction among several sheets. The
stagnation flow caused by the two sheets converges to form recirculating flow through
its interaction with the vortex along the third sheet. This recirculating flow strains and
stretches the sheets. The vortex tube is formed by axial straining, lowering of pressure
and the intensification of the swirling motion in the recirculating region. As a result
of the differential rotation induced by the tube and that self-induced by the sheet, the
vortex sheets are entrained by the tube and form spiral turns. The transition between
the three modes is examined. The initial configuration is in one of two symmetric
modes, but it is transformed into another set of two modes due to the occurrence of
reorientation in the vorticity direction along the stretched sheets. The symmetric mode
tends to be more persistent than the asymmetric mode, among the two transformed
modes. The tightening of the spiral turns of the spiral sheets produces a cascade of
velocity fluctuations to smaller scales and generates a strongly intermittent dissipation
field. To precisely capture the spiral turns, a grid resolution with at least kmaxη ≈ 4.0
(kmax is the largest wavenumber, η is the averaged Kolmogorov scale) is required. At
a higher Reynolds number, self-similar spiral vortices are successively produced by
the instability cascade along the stretched vortex sheets. A cluster consisting of spiral
vortices with an extensive range of length scales is formed and this cluster induces an
energy cascade.

1. Introduction
One of the characteristic features of turbulence is the generation of an energy

cascade from large scales to small scales, and the subsequent energy dissipation that
occurs in the smallest scale of turbulence (Kolmogorov scale). Another feature is
the existence of organized vortical structures, termed ribbons, blobs, and worms (e.g.
Jiménez & Wray 1998 and references therein). It may be expected that these two
features are dependent, and certain structures are responsible for the energy cascade
and dissipation. The primary elements of vortical structures are a filamentary object
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(a) (b) (c)

Figure 1. Schematics of three modes of vorticity vector alignment along a vortex tube and
dual sheets. The grey arrows denote vorticity vectors. (a) Mode 1, (b) Mode 2, (c) Mode 3.

(the vortex tube) in which vorticity predominates the strain rate and a non-filamentary
flat object (the vortex sheet) in which the strain rate and vorticity are comparably
large and correlated (Horiuti 2001). The tube and sheet are related because the vortex
tube is often formed by rolling-up of the vortex sheet, which is attributable to the
focusing of vorticity via the Kelvin-Helmholz instability, e.g. see Kerr & Dold (1994)
and Neu (1984).

Certain models have been considered to approximate vortical structures.
Representative ones are the Burgers vortex tube model for a tube and the Burgers
vortex layer model for a sheet (Burgers 1948). They are the exact steady solutions
of the Navier–Stokes equation in which the inward convection and production of
vorticity by stretching are balanced by outward diffusion. Lundgren (1982) introduced
a model of generalized and non-axisymmetric Burgers vortices for the small-scale
structure of turbulence. In this model, stretching by an axially symmetric strain and
differential rotation of a vortex tube in the core region of the model causes vortex
layers in the spiral to continually tighten (the Lundgren stretched spiral vortex,
referred to hereafter as the LSV), and this mechanism causes an energy cascade.
The LSV model gives the Kolmogorov k−5/3 energy spectrum as the result of the
axial stretching of a self-similar two-dimensional enstrophy cascade (Lundgren 1993).
Gilbert (1993) provided a simplified cascade picture for the evolution of vorticity in
the LSV; this spiral vortex was observed in bounded swirling flow with a rectangular
planform (Lundgren & Mansour 1996). The spiral structure is the source of dissipation
at the end of the cascade. This result is consistent with the observation using the
direct numerical simulation (DNS) data that local dissipation is particularly strong,
not within vortex tubes, but rather in their neighbourhood (e.g. Kerr 1985; Brachet
et al. 1992; Reutsch & Maxey 1992; Vincent & Meneguzzi 1994).

A schematic of the configuration considered by Lundgren (1982) is shown in
figure 1(a). In this model, the vorticity vectors or vortex lines along the vortex tube
and the dual sheets surrounding the tube all point in the direction of the tube
axis. This configuration is termed Mode 1. Pearson & Abernathy (1984), Moore
(1985), and Kawahara, et al. (1997) considered the interaction of a diffusing line
vortex and a linear shear flow with streamlines parallel to the line vortex. It was
shown that the vortex lines wrap around the vortex tube with a swirling motion to
form spiral layers of high transverse or azimuthal vorticity. The schematic of the
configuration of the vorticity vectors in this model is shown in figure 1(c) (Mode 3).
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In an analysis of the scaling properties of the LSV (Malik & Vassilicos 1996), it
was shown that however small the amplitude of the velocity field self-induced by
the spiral sheet, the effects of the spiral sheet on the frequency spectra cannot be
overlooked. Pullin & Lundgren (2001) considered the spectral properties of the LSV
model with non-axial vorticity (Mode 3), and showed that this model induces a k−7/3

spectrum at large wavenumbers, and the energy dissipation incurred by the axial and
azimuthal vorticities can be of comparable magnitudes. Kawahara (2005) showed
that intense dissipation is generated along the spiral sheets in Mode 3, and that the
contribution of spirals to the total dissipation dominates that of the tube. We note
that mere topological classification yields an asymmetric mode, as shown in figure 1(b)
(Mode 2).

In the LSV models cited above, a line vortex was embedded a priori as an initial
condition of the flow, and it was allowed to diffuse under the action of viscosity.
However, these models do not deal with the generation of a vortex tube in the
core region. Reutsch & Maxey (1992) studied the temporal evolution of small-scale
vorticity and passive scalar structures. It was shown that the vortex tube is formed
by rolling-up of the vortex sheet through Kelvin-Helmholtz instability and that the
scalar gradient sheets are generated through the interaction of antiparallel vortex
regions; however, no spiral structures were observed as in the later study by Vincent
& Meneguzzi (1994).

The rolling-up of the vortex sheet and the concentration of the axial vorticity yield
the LSV with the Mode 1 configuration. This simplistic scenario, however, would not
lead to the generation of the LSV in Modes 2 and 3, whereas the existence of Mode 2
or 3 LSV was reported in homogeneous isotropic turbulence (Kida & Miura 2000).
We consider that it is important to assess the existence of LSVs because they may
play vital roles in a turbulence cascade. The aim of this study is to extract LSVs
and analyse their complete creation in homogeneous isotropic turbulence. Then, we
explore the implications of the appearance of LSVs for turbulence energy cascade
and dissipation in § 2. Two representative examples of Mode 1 and Mode 2 LSVs are
presented. The transition between the three modes of LSVs and the roles of the LSV
in the generation of energy cascade and dissipation are discussed. In § 3, the effect of
grid resolution on the characterization of fine scales of an LSV is shown. In § 4, the
effects of Reynolds number on the LSV creation and turbulence cascade are studied.
Our conclusions are given in § 5.

2. Formation of LSVs
2.1. Description of DNS data

In this section, we give the details of the DNS data used for our assessment. They
are in incompressible and homogeneous isotropic turbulence and decay in time. In
table 1, the computational parameters are summarized. Periodic boundary conditions
are imposed in the x-, y-, and z-directions. The size of the computational domain is
2π in each direction. The Fourier pseudospectral method is used, and aliasing errors
are removed using the 3/2-rule. Time integration is carried out using a third-order
Runge–Kutta scheme. The initial velocities are provided as random fields with the
energy spectrum function E(k) specified for Runs 1–3 as

E(k) =
256
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Run N ν Rλ 〈K〉 〈ε〉 L λ η(×10−3) kmaxη

1 1024 0.00138 77.43 0.904 0.654 0.468 0.138 8.00 4.09
2 512 0.00138 76.87 0.897 0.654 0.469 0.137 8.00 2.05
3 256 0.00138 77.2 0.900 0.654 0.469 0.138 8.00 1.02
4 1024 0.00024 122.5 0.962 0.296 0.466 0.0887 2.63 1.35

Table 1. Parameters for the computed cases: number of grid points N ; kinematic viscosity ν;
Taylor-microscale Reynolds number Rλ; average kinetic energy 〈K〉; average dissipation rate
〈ε〉; integral length scale L; Taylor microscale λ; average Kolmogorov length η(= (ν3/〈ε〉)1/4);
grid resolution criterion (kmax is the maximum wavenumber).
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Figure 2. Temporal variations in (a) average turbulent energy (K = 1
2
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i 〉) and (b) average

enstrophy ( 1
2
〈ω2

i 〉) obtained from Runs 1 to 4.

where kp = 2 (Chasnov 1991), and the r.m.s. value of initial velocity fluctuations,
u′

0 = 1.0. The values of parameters for Runs 1–3 when the enstrophy is maximum
(t ≈ 1.925) are given in table 1. The eddy turnover time τ0 (= L0/u

′
0) = 0.819 for Runs

1–3, where L0 is the integral length scale at t = 0. In Run 4, the initial velocity field
is provided from Run 1 at t =1.75, and the viscosity is decreased to ν =0.00024. The
parameters at t = 1.95 are shown in table 1. Figures 2(a) and 2(b) show the temporal
variations in turbulence kinetic energy and enstrophy, respectively.

Using Runs 1–3, we examine the dependence of turbulence statistics on grid
resolution. Run 3 satisfies the conventional criterion for the resolution, kmaxη ≈ 1.0,
while Runs 2 and 1 do so for ≈2.0 and ≈4.0, respectively. Figure 3 shows the
probability density function (p.d.f.) of the dissipation rate ε normalized by its average
in the whole domain 〈ε〉. The large values exhibit marked differences although their
average values are close to each other. The maximum values are 113.5, 105.7 and
66.63 for Runs 1, 2, 3, respectively. Run 3 does not capture the strong intermittency
of ε. As is noted by Sreenivasan (2004), the DNS data based on the conventional
criterion kmaxη ≈ 1.0 are inadequate in representing the small-scale intermittency of
dissipative structures. This point is discussed in detail in § 3. The insufficient resolution
of Run 3 is also shown in the energy spectra (figure 4), which show a slight upturn in
the highest-wavenumber region. Since the performance of Run 3 is critically poor, we
utilize the DNS data from Runs 1 and 2 for assessment at a low Reynolds number.
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Figure 4. Normalized energy spectra obtained from Runs 1–3 at t = 1.9, and Run 4 at
t =2.125. E(k)/(〈ε〉ν5)1/4 is plotted versus kη. The straight solid line indicates scaling with
k−5/3. The thin dashed line shows the approximation obtained using (3.1).

2.2. Identification method for vortical structures

In this study, reordering is applied to the eigenvalues of the second-order symmetric
tensor, e.g., the eigenvalues of the strain-rate tensor Sij (=

1
2
(∂ui/∂xj + ∂uj/∂xi)),

σi (i = 1, 2, 3) are reordered as follows. When the eigenvector of Sij is maximally
aligned with the vorticity vector ω, the corresponding eigenvalue is chosen as
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(a) (b)

Figure 5. Three-dimensional rendering of the vortex sheets, tubes and −SijΠji . The sheets
are identified using the isosurfaces of [Aij ]+ (plotted using grey, [Aij ]+ =1000). (a) The tubes
identified using Q (red, Q = 1200) at t = 1.90. (b) Isosurfaces of −SijΠji obtained at t = 1.95
(red: −SijΠji = 26000; blue: −7000). Πji is the pressure Hessian defined in (2.4).

σs , the largest remaining eigenvalue as σ+, and the smallest one as σ−. The
corresponding strain-rate eigenvectors are denoted es , e+, e− (Andreotti 1997; Horiuti
2001). The identification method for the vortical structures used in this study is
as follows. For the vortex sheet, we use one of the eigenvalues of the tensor
Aij = −(SikΩkj + SjkΩki), to which the same reordering is applied. Ωij denotes
the vorticity tensor, Ωij = 1

2
(∂ui/∂xj − ∂uj/∂xi). We use one of the eigenvalues,

[Aij ]+ (Horiuti & Takagi 2005). For the vortex tube, we use the pressure p and also
the second-order invariant of the velocity-gradient tensor, Q(= − 1

2
(SikSki + ΩikΩki)),

which is a source term for pressure. In the following section, we consider the variables
and equations on the basis of es , e+, e−, e.g., the vorticity components ωs, ω+, ω− are
ωs = ω · es, ω+ = ω · e+, ω− = ω · e−, respectively.

We classify the velocity vector field using the index number defined as

I (C) = I (R, x0) =
1

2π

∮
C

dζ, (2.2)

where integration is carried out in a counterclockwise direction along the circle C

with its centre at x0 = (x0, y0, z0) and radius R. ζ denotes the angle that the velocity
vector makes with the horizontal axis of the plane and I (C) is the integration of the
increment of ζ , dζ , along C. I (C) is an integer, and I (C) = 1 when C encloses circular
or swirling flows, and I (C) = −1 when C encloses a stagnation flow, I (C) = 0 when C

encloses a uniform flow.
We show the resulting visualization in figure 5(a), which is a three-dimensional

rendering of the side view of the isosurfaces of [Aij ]+ and Q at t =1.90. In figure 5(a),
the isosurfaces of [Aij ]+ and Q are drawn using grey and red, respectively. Several
vortex tubes, which are extracted as a concentrated region of Q, are shown in
figure 5(a). The tube indicated by the white arrow is created by rolling-up of a single
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Figure 6. Distributions of [Aij ]+ and the index number I (C) in the (x, z) plane at y = 0.17
and t = 1.20. The contours of [Aij ]+ are shown in grey scale [contour levels from 400 to 5200].
The red and blue circles indicate the boundaries of the regions in which I (C) = 1 and −1,
respectively. The size of the plotted domain is 693 η.

vortex sheet due to the Kelvin–Helmholz instability. The tube indicated by the black
arrow (referred to as Example I in the following) is wrapped by spiralling vortex
sheets, and its structure is similar to that of the LSV proposed by Lundgren (1982).
Example I, however, is created not by rolling-up of a single vortex sheet but through
the interaction of multiple sheets. In the following, we show the genesis, growth and
annihilation stages of Example I. The entire process is organized into six stages. The
DNS data obtained from Run 2 are used for the figures up to t < 1.7 because there is
no noticeable difference between the results obtained from Runs 1 and 2. At t � 1.7,
those obtained from Run 1 are used (see § 3).

2.3. Genesis phase of LSV

Figure 6 shows the distribution of vortex sheets at t = 1.20. The isocontours of
[Aij ]+ in the (x, z)-plane at y =0.17 are shown. Note that the increments of contour
levels for [Aij ]+ are not uniform, and a smaller contour increment has been used for
low and high levels rather than for intermediate levels. The lowest contour levels for
[Aij ]+ are in grey. Many vortex sheets are discernible. The LSV shown in figure 5
is created in the region indicated by the heavy dashed circle at x ≈ 1.4, z ≈ 2.5. In
figure 6, the distribution of the index number I (C)(= I (R, x0)) is included, where the
circle C is placed in the same (x, z)-plane. I (C) is calculated at each grid point x0 and
the circle is centred at x0 with R = 0.2 (18.7η). I (C) = −1 on the grid points inside
the blue circle; I (C) = 1 inside the red circle. In figure 6, many intertwined blue and
red circles are discernible, which are generated when the swirling flow is near the
stagnation flow and R � ls (ls is the distance between the centre of the recirculating
flow and the stagnation point). I (C) = 0 on the grid points outside the blue and red
circles, including those in the region between the intertwined blue and red circles. The
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regions with I (C) = 0 can be divided into two groups by the variance of the angle
increment dζ along C. In the non-vortical regions in which the flow is nearly uniform,
the variance is small (<0.1 rad). The isocontours of the variance (�0.1 rad) almost
overlap with those of [Aij ]+ (figure not shown), and the vortical regions including the
intertwined regions can be characterized by large variance (�0.1 rad). The fractions
of the grid points at which I (C) = 1 and I (C) = −1 are 0.056 and 0.057, respectively,
and the fraction at which I (C) = 0 and the variance � 0.1 rad is 0.48. Therefore,
the stagnation, recirculation, intertwined flow and vortical sheet-like regions occupy
≈ 59% of the entire region (Dávila & Vassilicos 2003). Because the velocity field and
I (C) are dependent on the frame of reference, it is more accurate to calculate them
in the reference frame moving with the velocity at the point where the pressure is
minimal in the recirculating region. However, it is difficult to accomplish this for all
recirculating regions. We consider that the index number calculated in the fixed frame
provides the overall characterization of the velocity field.

Figures 7–9 show schematics of the arrangement of the vortex sheets, the vorticity
and velocity vectors at each stage and the DNS data corresponding to each schematic.

[i] Figure 7(a) shows a schematic of the arrangement of the vortex sheets and the
velocity and vorticity vectors. The stagnation flow generated by the sheets marked
S1 and S2 stretches S2. This stagnation flow converges by interacting with the sheet
marked S3 and the vortex along S3, and recirculating flow is formed. Figure 7(b) is an
enlargement of the recirculating region at an earlier time, indicated by the the heavy
dashed circle in figure 6. It shows the isocontours of [Aij ]+ and the distributions of
velocity vectors projected onto the (x, z)-plane at y =0.17 and t =1.125 corresponding
to figure 7(a). An arrangement of two sheets similar to S1 and S2 shown in figures 7(a)
and 7(b) is shown in figure 4 of Herring & Kerr (1993).

[ii] As is shown in figure 7(c), S2 and S3 are strained and stretched by the
recirculating flow and the swirling flow caused by the vortex along S3. Figure 7(d)
shows the corresponding isocontours of [Aij ]+ and p at t = 1.150. The vortex sheets
marked by black arrows in figure 7(d) are stretched in the directions indicated by the
arrows by the recirculating and swirling flows.

[iii] As shown in figure 8(a), S2 and S3 are further strained and stretched by the
recirculating and swirling flows. Figure 8(b) shows the corresponding isocontours of
[Aij ]+ and p at t =1.200. Two sheets, namely, the lower and upper sheets, marked L
and U, respectively, are formed.

[iv] As shown is in figure 8(c), the portions of the stretched S2 and S3, marked L
and U are detached. Figure 8(d) shows the corresponding isocontours of [Aij ]+ and p

at t = 1.500. It can be seen that the low-pressure region is enclosed by the two sheets,
L and U.

2.4. Growth phase of LSV

[v] As shown in figure 9(a), the low-pressure region in the recirculating flow is
absorbed into the lower sheet (L). Figure 9(b) shows the corresponding isocontours
of [Aij ]+ and p at t = 1.750. Note that the low-pressure region is absorbed into one
of the two sheets (L) in which the vorticity vectors point in the same direction as in
the low-pressure region.

Figure 10 shows the isocontours of [Aij ]+ , σs , and Π̃++ (see (2.6) below) at
t = 1.750. The region with σs < 0 is discernible surrounding the low-pressure region
indicated by the black arrow. The occurrence of compression in the s-direction,

σs < 0, is attributed primarily to a large positive pressure Hessian term, Π̃ss (see

(2.6)), in the same region (figure not shown). Another pressure Hessian term, Π̃++,
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Figure 7. (a) Schematic of formation of stage [i]. S1, S2 and S3 are vortex sheets. The black
arrows denote the velocity vectors, and the grey arrows the vorticity vectors. (b) Isocontours
of [Aij ]+ and velocity vectors in a cross-section of the (x, z)-plane at y = 0.17 at t = 1.125.
Contours are shown in grey scale for [Aij ]+ [from 40 to 320 (with increments of 40)], solid
lines for p [−3.01 to −4.0 (0.5)], velocity vectors are plotted at every 4 grid points. The white
arrows denote the directions of the velocity vectors on the sheets. (c) Schematic of stage [ii].
The long-dashed lines denote the isocontours of p. B is the saddle point of p. The region
enclosed by the short-dashed line denotes the region in which a change in vorticity direction
takes place. (d) Isocontours of [Aij ]+ [40 to 360 (40)] and pressure p [−1.0 to 4.0] at t = 1.15.
Positive values of p are plotted in solid lines, and negative ones in dashed lines.

reacts to relax the occurrence of this compression, as shown in figure 10. Because

∇2p =(Π̃++ + Π̃−− + Π̃ss), ∇2p takes large positive values, and the pressure in the
region indicated by the heavy dashed line is further lowered.

As shown in figure 9(c), the lowering of pressure intensifies the swirling motion,
and the core region of the tube is formed. Axially straining fields induced by the
vortices in near neighbours of the low-pressure region decreases the area of the cross-
section of the tube and vorticity concentrates (Lundgren 1982). Figure 9(d) shows
the isocontours of [Aij ]+ and p at t = 1.850. The vorticity in the low-pressure region
concentrates and grows, and the core region of the LSV is formed. Note that the
recirculating flow stretches and entrains not only L and U, but also other sheets, e.g.,
S1 in figure 7(b) is stretched and placed near L in figure 9(d).

[vi] Figure 11 shows the isocontours of [Aij ]+ and p at t = 1.950. The lower and
upper sheets are further stretched and entrained by the tube, causing the sheets to
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Figure 8. (a) Schematic of stage [iii]. The region enclosed by the dashed line denotes the
region in which a change in vorticity direction takes place. (b) Isocontours of [Aij ]+ [50 to 600]
and p [−3.5 to 3.5] in a cross-section of the (x, z)-plane at y = 0.17 at t = 1.2. (c) Schematic of
stage [iv]. (d) Isocontours of [Aij ]+ [60 to 1400] and p [−3.5 to 3.0] at t = 1.5.

form a spiral. This spiral tightens and forms spiral turns. It is revealed that the LSV
does indeed exist in homogeneous isotropic turbulence.

The formation of spiral turns is attributed to differential rotation. The strength of
differential rotation can be evaluated as

D = r
∂

∂r

(uθ

r

)
, (2.3)

where r and θ are the radial and circumferential directions in polar coordinates
around the tube axis, respectively, and uθ is the θ-component of velocity (Gilbert
1993). Since the azimuthal length and thickness of a vorticity blob with an initial
length of l0 become l0D T and l0/(D T ), respectively, after the time T (Gilbert 1993),
the vortex sheet is further stretched and becomes very thin when D is large. Figure 12
shows the distribution of D. We detected the axis of the vortex tube (Kida & Miura
1998), and the contours in figure 12 are shown in the (x1, x2)-plane perpendicular to
the tube axis located at x ≈ 0.88, z ≈ 2.47 in figure 9(d). It can be seen that D takes
larger values along the sheets than in the tube core region shown by the heavy dashed
line. This result indicates that the vortex sheets self-induce a large uθ and differential
rotation.
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Figure 9. (a) Schematic of stage [v]. (b) Isocontours of [Aij ]+ [400 to 4400] and p [−2.5 to
2.0] in a cross-section of the (x, z)-plane at y = 0.27 at t = 1.75. (c) Schematic of stage [vi].
(d) Isocontours of [Aij ]+ [300 to 4400] and p [−5.0 to 2.0] at t = 1.85.

Figures 13(a) and 13(b) show the distributions of dissipation rate normalized by
〈ε〉, and P (≡ −SikSkjSji + ΩikΩkjSji), respectively. The governing equations for SijSij

and ΩijΩij are

D

Dt

(
1
2
SijSij

)
= −SikSkjSji − ΩikΩkjSji − SijΠji, (2.4)

D

Dt

(
1
2
ΩijΩij

)
= 2ΩikΩkjSji, (2.5)

where Πij ( = ∂2p/∂xi∂xj ) is the pressure Hessian term and the viscous terms are
omitted. P is the summation of the production terms for 1

2
SijSji and 1

2
ΩijΩij , and

is essentially the derivative skewness, considered to represent the strength of the
energy cascade into small scales (Horiuti 2003). In figures 13(a) and 13(b), both ε

and P take large values along the spiral sheets because strain rate and vorticity are
simultaneously amplified along the sheet (Horiuti & Takagi 2005). The correlation
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Figure 10. Isocontours of [Aij ]+ (grey scale) in the (x, z)-plane at y = 0.27 and at t =1.750
[400 to 4800] (Run 1). Dashed lines show the isocontours of σs [−10 to −1] and solid lines

show the isocontours of Π̃++ [150 to 500]. The heavy dashed line shows the isocontour of p
[−1.675].
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computational grid cell in (x, z)-plane. The sizes of the plotted domain are 72.5η and 100η in
the x- and z-directions, respectively.



Multi-mode stretched spiral vortex 353

x1

x2

L

U0.2

0.1

0

0

–0.1

–0.1 0.1 0.2

–0.2

Figure 12. Isocontours of [Aij ]+ (grey scale) [2500 to 5250] and D [−40 to 50 (5)] in the
cross-section perpendicular to the tube axis at t = 1.850 (Run 2). Positive values are plotted by
solid lines, and negative ones by dashed lines. Heavy dashed line is the isocontour of p [−4.7].

x x

z

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

0.6 0.7 0.8 0.9 1.0 1.1 0.6 0.7 0.8 0.9 1.0 1.1

(a) (b)

Figure 13. Isocontours of [Aij ]+ (grey scale) [150 to 2750] and (a) ε/〈ε〉 [3 to 15],
(b) −SikSkjSji + ΩikΩkjSji [−2000 to 90000] in the (x, z)-plane at y =0.17 and t = 1.950.
Positive values are plotted by solid lines, and negative ones by dashed lines.

coefficient between ε and [Aij ]+ is ≈ 0.79 at t = 1.95. Note that ε takes values up to
15 times its average value (Kawahara 2005). These are the results of the stretching
and thinning of the sheet by differential rotation.
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2.5. Annihilation phase of LSV

It can be seen in figure 13(b) that P becomes negative in the core region of the tube.
This negativity is primarily attributed to ΩikΩkjSji < 0 and component-wise, σsω

2
s < 0.

Similarly, ΩikΩkjSji is negative along the axis of the tube shown in figure 5(a) (figure
not shown), and the vorticity diminishes in this region. This LSV is quickly annihilated
with lapse of time and the spiral turns fade (Ruetsh & Maxey 1992). As the vorticity
in the core region increases with the axial stretching of the LSV, ΩikΩkjSji increases
in stages [5] and [6], and in turn this causes a decrease in strain rate according to (2.4)
(Rosales & Meneveau 2006 and references therein). As a result, σs and σsω

2
s become

negative in the region where ΩikΩkjSji is large. Therefore, the LSV is created by
the self-amplification of strain rate and vorticity, but is also annihilated by their
self-diminution. Although the strain rate increases when ΩikΩkjSji < 0, its increase
is not sufficiently large to prevent the tube from decaying at this stage. Isolated
nearly axisymmetric vortex tubes have often been observed in previous studies, e.g. by
Pumir (1996). These tubes are amplified for a while, but then they decay by the same
mechanism. Figure 5(b) shows the isosurfaces of the−SijΠji term in (2.4) near the
axis of the tube shown in figure 5(a) in addition to those of [Aij ]+ (grey) at t =1.95.
Positive and negative values of −SijΠji are drawn using red and blue, respectively.
In the left half of the tube indicated using the black arrow in figure 5(b), −SijΠji is
negative and contributes to a decrease in σs , while in the right half indicated using
the white arrow, it is positive and contributes to an increase in σs . We consider that
this non-uniform variation is due to the variation of p caused by the axial Kelvin
wave propagating along the tube axis, as was pointed out in Verzicco, Jiménez &
Orlandi (1995), in which it was shown that when σsω

2
s < 0 the axial vorticity (ωs) is

rotated into a radial component (ω+) (see § 2.6). This reorientation does not occur
at the present Rλ because the magnitudes of the vorticity and strain rate are not
sufficiently large at this stage (see § 4).

The start of the creation of Example I can be defined as the appearance of the
recirculation flow (tb =1.125). The final stage can be characterized by the appearance
of a negative σsω

2
s in the core region (te = 1.950). The duration of these two stages,

tc = te − tb ≈ 0.825, is comparable to the eddy turnover time (τ0 = 0.819).

2.6. Intermode transition and frequency of appearance of each mode

Figure 14 shows the isocontours of enstrophy decomposed into components
perpendicular (ω2

y) and parallel (ω2
x + ω2

z ) to the page. ω2
y is dominant along the

lower sheet and ω2
x + ω2

z is dominant along the upper sheet. Noting that the axis of
the vortex tube shown in figure 5 indicated by the black arrow is nearly perpendicular
to the (x, z)-plane, Example I is asymmetric and is in Mode 2 (figure 1b). Figure 15(a)
shows a schematic of the arrangement of the vorticity vectors es and e+ along the
lower (L) and upper (U) sheets and tube. On L, es is parallel to the tube axis and e+

is perpendicular to the axis, whereas on U, es is perpendicular to the axis and e+ is
parallel to the axis.

The conventional rolling-up of a single vortex sheet due to the Kelvin–Helmholz
instability yields only an LSV in Mode 1 because a stability analysis of the stagnation-
point flow showed that a vorticity component perpendicular to the direction of the
diverging flow decays (Kerr & Dold 1994), and that a parallel component can grow.
This Mode 2 LSV is created due to the reorientation of the vorticity on S2 from the
direction parallel to the page to that perpendicular to the page in stages [ii] and [iii].

Figure 16(a) shows the isocontours of [Aij ]+ and σsω
2
s at t = 1.150; σsω

2
s is negative

on L, whereas it is positive on U. In turn, the azimuthal component σ+ω2
+ takes
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Figure 14. Isocontours of [Aij ]+ [400 to 5200 (400)] and enstrophy in the (x, z)-plane at

y =0.27 and t = 1.75. The axial (ω2
y [2000 to 10000 (1000)]) and azimuthal components

(ω2
x + ω2

z [2500 to 5500 (500)]) are plotted by solid and dashed lines, respectively.
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Figure 15. Schematic of the configuration on lower (L) and upper (U) sheets in Mode 2. Grey
arrows denote vorticity vectors. (a) The black arrows denote the strain-rate eigenvectors es

and e+, marked s and +, respectively; (b) the large white arrows show the velocity vectors
induced by the vorticity along L and U.

large positive values in the region where σsω
2
s < 0 on L (figure not shown). On L, ω2

s

attenuates and ω2
+ grows. The vorticity vectors along L are turned from the direction

parallel to the page to the direction perpendicular to the page. This reorientation
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Figure 16. Isocontours of [Aij ]+ (grey scale) [20 to 320] in (a), [50 to 600] in (b). The solid

and dashed lines show the isocontours of (a) σsω
2
s [−1100 to 10000] at t = 1.150; and (b) Π̃ss

[−100 to 100] at t = 1.200 in the (x, z)-plane at y = 0.17. Positive values are plotted by solid
lines, and negative ones by dashed lines.

does not occur on U and the vorticity direction remains parallel to the page since
σsω

2
s > 0.

The governing equations for σs can be derived as follows (Nomura & Post 1998):

D

Dt
σs = −σ 2

s + 1
4
(ω2

+ + ω2
−) − Π̃ss, (2.6)

where Π̃ ij is the pressure Hessian on the basis of the principal strain eigenvectors,
ET (Πij )E. The matrices E and ET are orthogonal and their rows and columns,
respectively, are es , e+, e−. The viscous term is omitted in (2.6). Figure 16(b) shows

isocontours of Π̃ss at t = 1.200. Because Π̃ss is positive on L, σs decreases with time

and becomes negative, whereas Π̃ss is negative on U and σs remains positive. The
initial configuration is in Mode 3, but is converted into Mode 2 (Mode 3–2 transition).
On L, an indefinite growth of negative σs is prevented by the increase in ω2

+ (see (2.6)).
We have extracted another example of an LSV (Example II) in which a change

in vorticity direction occurs on both lower and upper sheets. Figure 17 shows a
schematic of the formation of Example II. Figure 18(a) shows the corresponding
isocontours of [Aij ]+ and the distributions of velocity vectors projected onto the
(x, y)-plane. Similarly to Example I, the recirculating flow is formed through the
interaction of the stagnation flow generated by S1 and S2 with S3 and the swirling
flow caused by the vortex along S3. This recirculating flow concentrates and an LSV

is created. Figure 18(b) shows the pressure Hessian term Π̃ ss; is positive on both S1
and S3 in the regions indicated by the white arrows. Therefore, the vortex stretching
term σsω

2
s becomes negative on both sheets, and the initial Mode 3 configuration

is converted to Mode 1 (Mode 3–1 transition). Mode 3–1 transition is akin to the
expulsion of the non-axial vorticity from the tube core region shown by Pearson &
Abernathy (1984), Moore (1985) and Kawahara et al. (1997). In Example II, tb ≈ 0.600,
te ≈ 1.400, and tc = te − tb ≈ 0.800 which is comparable to τ0 (=0.819) as in Example I.

Mode 3–1 and Mode 3–2 transitions can be distinguished by the swirling direction
of the vortex on S3. In Mode 3–1 transition, the swirling direction is the same as
that of the recirculating flow, as shown in figure 17. S3 is stretched and entrained by
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Figure 17. Schematic of the formation of Example II. S1, S2 and S3 are vortex sheets. The
black arrows denote the velocity vector, and the grey arrows denote the vorticity vector. The
long-dashed line denotes the isocontour of p, and B is the saddle point of p. The regions
enclosed by the short-dashed lines are the regions in which a change in vorticity direction
occurs.
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Figure 18. Isocontours of [Aij ]+ (grey scale) [87.5 to 3250] in a cross-section of the (x, y)-plane
at z = 3.43 and t = 0.750. The x-abscissa is reversed. (a) Distributions of velocity vectors and
isocontours of p [−1.43 to −2.5]. Velocity vectors are plotted at every 6 grid points. The white

arrows denote the directions of the velocity vectors on the sheets. (b) Isocontours of Π̃ss [−60
to 80]. Positive and negative values are plotted by solid and dashed lines, respectively.

the recirculating flow. The stretched portion of S3 is placed inside the saddle point
of the pressure p marked B in figure 17. As a result, the distribution of p along the

stretched portion of S3 is concave as can be seen in figure 18(a), and Π̃ss > 0 as in
figure 18(b). Because the distribution of p on S1 is also concave, the reorientation also
occurs on S1. In Mode 3–2 transition (figure 7c), the swirling direction is opposite
to that of the recirculating flow. S3 is stretched by both recirculating and swirling
flows. The stretched portion of S3 is in the vicinity of the saddle point of p marked
B in figure 7(c). The distribution of p along the heavy black line on the stretched

portion of S3 shown in figure 8(b) is convex (see also figure 7b, d), and Π̃ ss < 0 as in
figure 16(b). The reorientation does not take place on S3, whereas the distribution of
p is concave along S2, and the reorientation occurs on S2.

Figure 19(a) shows the p.d.f. of Π̃ss conditionally sampled in the region in which
the strain rate and vorticity are comparably large (flat sheet) (Horiuti 2001). At an
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Figure 19. Distribution of the p.d.f. in the flat sheet region at t = 1.900. (a) Π̃ss obtained
from Run 1 (p.d.f. is plotted every 2 bins), (b) σsω

2
s obtained from Runs 1–3 (every 4 bins).

early stage (t = 1.05), the p.d.f. is skewed to positive values, which indicates that a
Mode 3–1 or 3–2 transition could occur. At a later time (t = 1.5), the p.d.f. becomes
skewed to negative values. The conversion of the vorticity direction is complete, and
the vorticity in the new direction grows.

2.7. Persistence of each mode

A straightforward entrainment of two vortex sheets, e.g. S2 and S3 in figure 7(b) and
S1 and S3 in figure 18(a), by the recirculating flow results in a Mode 3 LSV. The
formation of streamwise vortices in Mode 3 by the convergence of the recirculating
flow, which is generated by the interaction of high- and low-speed streaks, has been
shown in shear turbulence (Waleffe 2003). Figure 19(b) shows the p.d.f. for σsω

2
s in

the flat sheet region obtained from Runs 1 to 3. The large-value tails tend to become
broader as the grid is refined. Because the formation of a Mode 1 LSV by rolling-up of
a single sheet is associated with only positive σs , the appearance of a markedly large
proportion of negative σsω

2
s in figure 19(b) and the predominantly positive p.d.f. of

σ+ω2
+ (figure not shown) indicate that Mode 3–1 or 3–2 transition frequently occurs in

homogeneous isotropic turbulence. As a result, a Mode 3 LSV is seldom observed in
our DNS data at the later stage of development. Note that a negative σsω

2
s also implies

the occurrence of vortex compression as discussed in § 2.5, but at the annihilation
stage the conversion of ωs into ω+ does not occur because the magnitude of ω+ is very
small.

In the Mode 2 LSV shown in figure 12, the differential rotation induced by the
vortex tube and sheets is weaker along the upper sheet than along the lower sheet.
Therefore, stronger stretching and a more intense energy cascade and dissipation
occur along the lower sheet than along the upper sheet as can be seen in figure 13.
The schematic of the distributions of the vorticity and velocity vectors in Mode 2
shown in figure 15(b) explains this result. The vorticity along L induces velocity
azimuthal to the tube axis, while that along U induces velocity parallel to the tube
axis. Therefore, more intense differential rotation is induced along L than along U.

Next, we examine Mode 2 in terms of its intercomponent energy transfer. The
governing equations for the components of the energy along es , u2

s , and along e+, u2
+,
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are

D

Dt

(
1

2
u2

s

)
= −1

4

usu+

σs − σ+

(ωsω+ − Π̃s+), (2.7)

D

Dt

(
1

2
u2

+

)
= +

1

4

usu+

σs − σ+

(ωsω+ − Π̃s+), (2.8)

where only relevant terms are shown. Figure 20 shows isocontours of − 1
4
(usu+ωsω+)

obtained from Example I. This term is predominantly positive in the region along the

upper sheet indicated by the black arrow (the contribution of usu+Π̃s+ is negligible
along the upper sheet). Because σs−σ+ < 0 along the sheet (Horiuti 2001), u2

s is reduced
and converted to u2

+ along the upper sheet. Similarly, the enstrophy component ω2
s

tends to be reduced and converted to the component ω2
+ near the upper sheet due to

the action of the pressure Hessian term ωsω+Π̃s+/(σs −σ+) (figure not shown), i.e. the
vorticity direction tends to be reoriented toward the tube axis even at the later stage
of development (t = 1.750). With regard to the intercomponent energy and enstrophy
exchange, the configuration on the upper sheet of Mode 2 tends to be converted into
that on the lower sheet of Mode 2, i.e. Mode 2 tends to be converted into Mode 1. A
Mode 1 LSV is more persistent than a Mode 2 LSV. The effect of the upper sheet in
a Mode 2 LSV is not critically important in the turbulence cascade. The same would
be true for the Mode 3 LSV. In fact, the slope of the energy spectrum which a Mode 3
LSV induces is −7/3 (Pullin & Lundgren 2001). The slope induced by a Mode 2 LSV
is intermediate between −5/3 and −7/3. In Kawahara et al. (1997), it was shown
that as the spiral turns tighten, the azimuthal vorticity in the neighbouring spiral
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sheets induces axial shear flows which tilt the vorticity toward the axial direction. The
conversion of Mode 2 to Mode 1 may be related to this mechanism.

It is difficult to quantify the percentage of LSVs in Mode 1 or 2 (or Mode 3). Since
the probability of the swirling direction of the vortex along S3 being clockwise or
counterclockwise is considered to be even, Mode 3–1 or 3–2 transition may occur
nearly equally. Along the vortex tube in Example II, the reorientation of the vorticity
direction takes place on two sheets for some cross-sections, but occasionally it takes
place only on one of the two sheets in another cross-section. In general, it appears
that the LSV is in a mixture of Mode 1 and 2 configurations. The non-uniformity of
the mode along the vortex tube may lead to the formation of the helical structures
observed in previous studies, e.g. Vincent & Meneguzzi (1994).

In figure 5, the vortex tube marked by the white arrow is in Mode 1, whereas that
marked by the black arrow (Example I) is in Mode 2. It is interesting to note that
these two tubes are nearly transversely aligned. The Mode 2 LSV occasionally yields
this configuration, but it was shown by Holm & Kerr (2002) that this helical state is
associated with a vorticity surge.

3. Estimate of the thickness of the spiral sheet
As shown in § 2, the spiral sheet is stretched to a very small thickness. In this

section, we estimate the average thickness of the vortex sheet by fitting the computed
energy spectrum, E(k, t), with the assumed functional form:

E(k, t) = c(t)k−n(t)e−2δ(t)k, (3.1)

where δ(t) is the logarithmic decrement and n(t) is the algebraic prefactor (Brachet
et al. 1992). The validity of this fitting is assessed in figure 4, which includes the profile
of the energy spectrum estimated using (3.1) in Run 1. The fitted spectrum coincides
with the exact spectrum in the range k η � 0.1. In (3.1), δ(t) provides an estimate of
the average thickness of the vortex sheet (Sulem, Sulem & Frisch 1983).

Figure 21 shows the temporal evolutions of δ(t) normalized by η(t) obtained from
Runs 1–3. At early time, δ(t) exhibits an almost inviscid exponential decay followed
by a slowing down due to viscosity, and after reaching its minimum, δ(t) converges
to its asymptotic value (Passot et al. 1995). When the fitting is carried out using
the wavenumber range of k = 5–kmax, the three runs show marked differences. The
asymptotic thickness of the sheet from Run 1 (≈ 2.05 η) is smaller than those from
Runs 2 (≈ 2.34 η) and 3 (≈ 3.21 η). In figure 11, the size of the computational
grid cell is shown for reference using a black square placed at x ≈ 1.0, z ≈ 2.15. The
estimate of the thickness obtained using this grid cell agrees approximately with the
estimate obtained using (3.1) (the grid interval 
 is 0.78 η in Run 1). Because the
fittings using the range of k =5–255 (denoted as 1024 (k = 5–255) in the figure) and
k = 5–127 (1024 (k = 5–127)) using the data from Run 1 yield evolutions similar to
those obtained from Runs 2 and 3, respectively, the fine-scale structure of the LSV is
not fully resolved in Runs 2 and 3, as noted in § 2.1.

The extraction of fine dissipative structures of an LSV is markedly affected by grid
resolution. The results obtained from Run 3 (kmaxη ≈ 1.0) which corresponds to those
obtained from Run 1 (figure 11) are shown in figure 6 of Horiuti & Takagi (2005). The
contours of the vortex sheet were fragmented, and spiral turns were indistinct and not
well captured, although the vortex tubes were fully resolved. In Run 2 (kmaxη ≈ 2.0),
the spiral turns of the vortex sheets are distinct but the contours of the sheets are still
fragmented, which is pronounced at t � 1.7 (figure not shown). In Run 1 (kmaxη ≈ 4.0),
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Figure 21. Temporal evolution of logarithmic decrement δ(t) normalized by η(t) obtained
from Run 1 (denoted as 1024), 2 (512), 3 (256).

this fragmentation is eliminated as was shown for the scalar field by Schumacher,
Sreenivasan & Yeung (2005). Note that no additional numerical smoothing is applied
to the contours. These results indicate that a very high resolution of the vortex sheet is
required to accurately capture the LSV. We believe that the spiral structures were not
observed by Ruetsh & Maxey (1992), Vincent & Meneguzzi (1994) and Pumir (1996)
partly because kmaxη ≈ 1.0−2.0 in their data. We note that even the contours obtained
from Run 1 still exhibit a weak fragmentation in figure 11. Moreover, δ(t) shown in
figure 21 exhibits no apparent tendency of convergence as the grid is refined. Even the
resolution of kmaxη ≈ 4.0 may be insufficient to resolve the very fine scales of the LSV.
In fact, ηmin/
 ≈ 0.41 in Run 1 (≈ 0.20 and 0.11 in Runs 1 and 2, respectively) at
t = 2.0, where ηmin denotes the minimum of the local Kolmogorov scale η (=ν3/4/ε1/4)
in the whole domain. The requirement for substantially better resolution to study
the properties of sub-Kolmogorov scales was pointed out in Jiménez & Wray (1998).
The estimate of required grid points number for DNS deduced in Sreenivasan (2004),
N ∝ R2

λ , appears to be more reasonable than the conventional estimate of N ∝ R
3/2
λ .

4. LSV formation at higher Reynolds number
In this section, we investigate the effect of the Reynolds number on the structure

of an LSV using Run 4. Figure 22 shows the distributions of [Aij ]+ and p at t =1.950
obtained from Run 4, which exhibit a marked difference from those obtained from
Run 1 (see figure 11). The stretched vortex sheets emanating from the core region
of the LSV are thinner, and the spiral has more turns due to the more intense
differential rotation. At higher Reynolds numbers, the spiral rotates and wraps
continuously around itself into ever tighter coils. This LSV entrains many of the
sheets surrounding its core region in addition to the sheets marked L and U in
figure 9(b), e.g. the sheets marked SA, SB and SC.

Another notable feature of Run 4 is the creation of extra LSVs, e.g. the LSV
along the upper sheet in the region indicated by the black arrow in figure 22. At low
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Figure 22. Isocontours of [Aij ]+ (grey scale) [150 to 17500] obtained from Run 4. The solid
and dashed lines show the isocontours of p [−9.0, −7.0, 0.21] in the (x, z)-plane at y = 0.17
and t = 1.950. Positive values are plotted by solid lines, and negative ones by dashed lines.

Reynolds numbers, the LSV in Run 1 shown in figure 11 gradually fades due to the
vortex compression and viscous effect, and this extra LSV is not created. In a linear
stability analysis for a Burgers vortex layer (Beronov & Kida 1996), it was shown
that the layer is unstable when Rel =U0/

√
Aν � 1, where A and U0 are the strength

of the stagnation-point flow and strain, respectively. Noting that Rel ≈ 1.25(ΩB(0)/A)
(ΩB(0) denotes the vorticity of the layer), the layer vorticity and Rel increases in
Run 4 because the velocity difference across the layer is preserved but the layer
becomes thinner by stretching. The newly created LSV indicated by the black arrow
in figure 22 rolls up and grows with time as shown in figure 23 at t = 2.125. The
formation of other LSVs can be seen in figure 23, e.g. the one marked by the black
arrow at x = 1.05, z = 2.23. These newly created LSVs again stretch the vortex sheet
emanating from them, and also entrain other sheets surrounding them by differential
rotation. Note that the spiral sheets in the core region of Example I also roll up and
many small-scale LSVs are created in the core region.

Although we show only two examples, Examples I and II, there are many regions
in figure 6 similar to the region marked by the heavy dashed line, in which the two
sheets intersect nearly perpendicularly and the recirculating flow represented by the
red circles resides in the vicinity of the two sheets. Therefore, many LSVs similar to
Examples I and II are created. The maximum values of ω2

i in Examples I and II are
40.5〈ω2

i 〉 (at t = 1.95) and 27.3〈ω2
i 〉 (at t = 1.0), respectively. Both examples are strong

vortices (Jiménez & Wray 1998). These LSVs, which are created by an interaction
among several sheets, tend to possess a large vorticity because the large circulation in
the recirculating region is confined to the core region of the LSV with a small cross-
section area (primary instability). These LSVs are long in the lateral direction, e.g. the
length of the vortex tube in Example I is 0.65 (≈1.40 L) (figure 5). These constitute
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Figure 23. Isocontours of [Aij ]+ (grey scale) [150 to 12500] obtained from Run 4. The
dashed lines show the isocontours of p [−8.0 to −1.0] in x − z plane at y = 0.17 and t = 2.125.

Tertiary instability

Primary instability

Secondary instability

Figure 24. Schematic of network of hierarchical LSVs created by the instability cascade.

the LSVs on the largest scale. They stretch the spiral arms emanating from them,
and the stretching induces the instability of the spiral arms and leads to the creation
of the second generation of LSVs (secondary instability). Then, the second generation
of LSVs strains and stretches the vorticity blobs in their neighbourhood. With the
stretching of these blobs, tertiary instability is induced, and the third generation
of LSVs is created by rolling-up of the stretched blobs. As the cascade progresses,
the instability creates an LSV carrying smaller circulation. This instability cascade
(Jiménez & Wray 1998) is schematically shown in figure 24.
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Extending this argument, this process would be repeated until the scale reaches a
minimum imposed by molecular diffusion. High Reynolds numbers would lead to
the formation of hierarchical cluster of self-similar LSV networks, and induce the
cascade of energy to small scales. Because the lateral extent of the cluster is several
times larger than the integral-length scale L, LSVs with an extensive range of scales
are contained in the cluster. As a result, the energy spectrum obtained from Run 4
shown in figure 4 approximately fits the Kolmogorov −5/3 law for about a decade,
and the enstrophy (or the dissipation rate) increases very rapidly in Run 4 (figure 2b).
A similar cascade model was considered by Childress (1984), in which self-similar
eddies were created by splitting of tubes. Although a spiral with a large number of
turns is folded at many self-similar scales (Lundgren 1993), the spiral itself may not
induce the fractal nature of the dissipation field, but hierarchical LSVs would cause
such fractality. Note that small-scale LSVs may be dominant in Mode 1 because they
are formed primarily by rolling-up of a stretched vortex sheet. This Mode 1 LSV
induces the −5/3 energy spectrum (Lundgren 1982).

The spiral turns of very thin sheets and the creation of hierarchical LSVs at high Rλ

cause a strong intermittency of the small scale and dissipation field because LSVs are
created in small subsets of the flow field instead of space-filling subsets. It is generally
considered that the normalized dissipation rate 〈ε〉L/u′3 tends to a non-zero constant
as ν → 0 (Sreenivasan 1998). To accomplish this convergence, the velocity derivatives
should diverge as ν → 0. This divergence may be attributed to the thinning of the
spiral sheet to extreme length induced by hierarchical LSVs. As a common drawback
of the run with kmaxη ≈ 1.0 noted in § 3, the contours of the vortex sheets shown in
figure 23 exhibit serious fragmentation, and very thin blobs stretched by small-scale
LSVs are not captured. A study using higher resolution is underway.

5. Conclusions
We have identified a stretched spiral vortex (Lundgren 1982, LSV) using DNS

data for homogeneous isotropic turbulence, and its properties have been presented.
Its genesis, growth and annihilation are elucidated, and the roles of the LSV in the
generation of turbulence are shown. Besides the two symmetric configuration modes
studied in previous works, in which a vortex sheet whose vorticity is either parallel
(Mode 1) or perpendicular (Mode 3) to a vortex tube is wrapped into a spiral, a
third asymmetric mode (Mode 2) is identified, in which one branch of the spiral has
vorticity parallel to the tube, and that of the other is perpendicular to the tube. A
conventional rolling-up of a single vortex sheet yields a Mode 1 LSV. Mode 2 and 3
LSVs are created not by this rolling-up but through the interaction of several sheets.
The stagnation flow caused by two sheets converges to form the recirculating flow by
an interaction with the vortex along the third sheet. This recirculating flow strains
and stretches the sheets. A vortex tube is formed by axial straining provided by the
other vortices, the lowering of pressure and the intensification of the swirling motion
in the recirculating region. By the differential rotation induced by the tube and that
self-induced by the sheet, the vortex sheets are entrained by the tube and form spiral
turns. The initial configuration is Mode 3, which is transformed into either Mode 1
or 2. This transformation is due to the compression of one of the pre-existing sheets
before being wrapped, in such a way that its azimuthal vorticity is damped, and
its axial vorticity is amplified. On at least one of the two sheets, the compression
of azimuthal vorticity usually occurs by the action of the pressure Hessian term.
On another sheet, compression occurs when the vortex on the third sheet swirls in
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the same direction as that in the recirculating flow. Mode 1 and Mode 2 LSVs are
considered to be created almost equally, but Mode 1 tends to be more persistent than
Mode 2.

By tightening of the spiral turns, spiral sheets are stretched to extreme lengths.
The cascade of velocity fluctuations to smaller scale and more intense dissipation
take place along spiral sheets (Lundgren 1982). The local dissipation rate ε and
Kolmogorov scale η exhibit a strong intermittency (Schumacher et al. 2005). It is
shown that a grid resolution with at least kmaxη ≈ 4.0 is indispensable for a precise
capture of the spiral turns and dissipation field at Rλ ≈ 80.

At a higher Reynolds number, the hierarchical cluster of spiral vortices is formed
due to the instability cascade induced by the stretching of vortex sheets. As the
cascade progresses, self-similar LSVs carrying smaller circulations are successively
created. The lateral extent of this cluster is several times the integral scale, and this
LSV cluster comprises an entire range of length scales from the overall scale of the
structure to a minimal Kolmogorov scale. As a result, this cluster induces an energy
cascade and the energy spectrum fits the Kolmogorov −5/3 law.
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for Fusion Science, Cybermedia Centre, Osaka University, and Information Synergy
Centre, Tohoku University.
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Jiménez, J. & Wray, A. A. 1998 On the characteristics of vortex filaments in isotropic turbulence.
J. Fluid Mech. 373, 255–285.

Kawahara, G. 2005 Energy dissipation in spiral vortex layers wrapped around a straight vortex
tube. Phys. Fluids 17, 055111.

Kawahara, G., Kida, S., Tanaka, M. & Yanase, S. 1997 Wrap, tilt and stretch of vorticity lines
around a strong thin straight vortex tube in a simple shear flow. J. Fluid Mech. 353, 115–162.

Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures
in isotropic numerical turbulence. J. Fluid Mech. 153, 31–325.

Kerr, O. S. & Dold, J. W. 1994 Periodic steady vortices in a stagnation-point flow. J. Fluid Mech.
491, 307–325.

Kida, S. & Miura, H. 1998 Identification and analysis of vortical structures Eur. J. Mech. B/Fluids
17, 471–488.

Kida, S. & Miura, H. 2000 Double spirals around a tubular vortex in turbulence. J. Phys. Soc.
Japan 69, 3466–3467.

Lundgren, T. S. 1982 Strained spiral vortex model for turbulent structures. Phys. Fluids 25,
2193–2203.

Lundgren, T. S. 1993 A small-scale turbulence model. Phys. Fluids A 5, 1472–1483.

Lundgren, T. S. & Mansour, N. N. 1996 Transition to turbulence in an elliptic vortex. J. Fluid
Mech. 307, 43–62.

Malik, N. A. & Vassilicos, J. C. 1996 Eulerian and Lagrangian scaling properties of randomly
advected vortex tubes. J. Fluid Mech. 326, 417–436.

Moore, D. W. 1985 The interaction of a diffusing vortex and an aligned shear flow. Proc. R. Soc.
Lond. A 399, 367–375.

Neu, J. C. 1984 The dynamics of stretched vortices. J. Fluid Mech. 143, 253–276.

Nomura, K. K. & Post, G. K. 1998 The structure and dynamics of vorticity and rate of strain in
incompressible homogeneous turbulence. J. Fluid Mech. 377, 65–97.

Passot, T., Politano, H., Sulem, P.-L. & Meneguzzi, M. 1995 Instability of strained vortex layers
and vortex tube formation in homogeneous turbulence. J. Fluid Mech. 282, 313–338.

Pearson, C. F. & Abernathy, F. H. 1984 Evolution of the flow field associated with a streamwise
diffusing vortex. J. Fluid Mech. 146, 271–283.

Pullin, D. I. & Lundgren, T. S. 2001 Axial motion and scalar transport in stretched spiral vortices.
Phys. Fluids 13, 2553–2563.

Pumir, A. 1996 A numerical study of pressure fluctuations in three-dimensional, incompressible,
homogeneous, isotropic turbulence. Phys. Fluids 6, 2071–2083.

Rosales, C. & Meneveau, C. 2006 A minimal multiscale Lagrangian map approach to systhesize
non-Gaussian turbulent vector fields. Phys. Fluids 18, 075104.

Ruetsh, G. R. & Maxey, M. R. 1992 The evolution of small-scale structures in homogeneous
turbulence. Phys. Fluids A 4, 2747–2760.

Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing.
J. Fluid Mech. 531, 113–122.

Sreenivasan, K. R. 1998 An update on the energy dissipation rate in isotropic turbulence. Phys.
Fluids 10, 528–529.

Sreenivasan, K. R. 2004 Possible effects of small-scale intermittency in turbulent reacting flows.
Flow, Turbulence Combust. 72, 115–131.

Sulem, C., Sulem, P. L. & Frisch, H. 1983 Tracing complex singularities with spectral methods. J.
Comput Phys. 50, 138–161.
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